Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.02.13.23285855

ABSTRACT

ABSTRACT Background: Post-COVID conditions (PCC) are common and have significant morbidity. Risk factors for PCC include advancing age, female sex, obesity, and diabetes mellitus. Little is known about early treatment, inflammation, and PCC. Methods: Among 883 individuals with confirmed SARS-CoV-2 infection participating in a randomized trial of CCP vs. control plasma with available biospecimens and symptom data, the association between early COVID treatment, cytokine levels and PCC was evaluated. Cytokine and chemokine levels were assessed at baseline, day 14 and day 90 using a multiplexed sandwich immuosassay (Mesoscale Discovery). Presence of any self-reported PCC symptoms was assessed at day 90. Associations between COVID treatment, cytokine levels and PCC were examined using multivariate logistic regression models. Results: One-third of the 882 participants had day 90 PCC symptoms, with fatigue (14.5%) and loss of smell (14.5%) being most common. Cytokine levels decreased from baseline to day 90. In a multivariable analysis including diabetes, body mass index, race, and vaccine status, female sex (adjusted odds ratio[AOR]=2.70[1.93-3.81]), older age (AOR=1.32[1.17-1.50]), and elevated baseline levels of IL-6 (AOR=1.59[1.02-2.47]) were associated with development of PCC. There was a trend for decreased PCC in those with early CCP treatment (<5 days after symptom onset) compared to late CCP treatment. Conclusion: Increased IL-6 levels were associated with the development of PCC and there was a trend for decreased PCC with early CCP treatment in this predominately unvaccinated population. Future treatment studies should evaluate the effect of early treatment and anti-IL-6 therapies on PCC development.


Subject(s)
Fatigue , Diabetes Mellitus , Obesity , COVID-19 , Inflammation
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.11.23284347

ABSTRACT

Abstract IMPORTANCE. Many hospitalized patients with COVID-19 have been treated with convalescent plasma. However, it is uncertain whether this therapy lowers mortality and if so, if the mortality benefit is larger among specific subgroups, such as recipients of plasma with high antibody content and patients treated early in the disease course. OBJECTIVE. To examine the association of COVID-19 convalescent plasma transfusion with mortality and the differences between subgroups in hospitalized patients with COVID-19. DATA SOURCES. On October 26, 2022, a systematic search was performed for clinical studies of COVID-19 convalescent plasma in the literature. STUDY SELECTION. Randomized clinical trials and matched cohort studies investigating COVID-19 convalescent plasma transfusion compared with standard of care treatment or placebo among hospitalized patients with confirmed COVID-19 were included. The electronic search yielded 3,841 unique records, of which 744 were considered for full-text screening. The selection process was performed independently by a panel of five reviewers. DATA EXTRACTION AND SYNTHESIS. The study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Data were extracted by 5 independent reviewers in duplicate and pooled using inverse-variance random-effects model. MAIN OUTCOMES AND MEASURES. Prespecified end point was all-cause mortality during hospitalization. RESULTS. Thirty-nine randomized clinical trials enrolling 21,529 participants and 70 matched cohort studies enrolling 50,160 participants were included in the systematic review. Separate meta-analyses demonstrated that transfusion of COVID-19 convalescent plasma was associated with a significant decrease in mortality compared with the control cohort for both randomized clinical trials (odds ratio (OR), 0.87 [95% CI, 0.76-1.00]) and matched cohort studies (OR, 0.77 [95% CI, 0.64-0.94]). Meta-analysis of subgroups revealed two important findings. First, treatment with convalescent plasma containing high antibody levels was associated with a decrease in mortality compared to convalescent plasma containing low antibody levels (OR, 0.85 [95% CI, 0.73 to 0.99]). Second, earlier treatment with COVID-19 convalescent plasma was associated with a significant decrease in mortality compared with the later treatment cohort (OR, 0.63 [95% CI, 0.48 to 0.82]). CONCLUSIONS AND RELEVANCE. COVID-19 convalescent plasma use was associated with a 13% reduced risk in mortality, implying a mortality benefit for hospitalized patients with COVID-19, particularly those treated with convalescent plasma containing high antibody levels treated earlier in the disease course.


Subject(s)
COVID-19
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.09.15.22280000

ABSTRACT

SARS-CoV-2 variants have continuously emerged even as highly effective vaccines have been widely deployed. Reduced neutralization observed against variants of concern (VOC) raises the question as to whether other antiviral antibody activities are similarly compromised, or if they might compensate for lost neutralization activity. In this study, the breadth and potency of antibody recognition and effector function was surveyed in both healthy individuals as well as immunologically vulnerable subjects following either natural infection or receipt of an mRNA vaccine. Considering pregnant women as a model cohort with higher risk of severe illness and death, we observed similar binding and functional breadth for healthy and immunologically vulnerable populations. In contrast, considerably greater functional antibody breadth and potency across VOC was associated with vaccination than prior infection. However, greater antibody functional activity targeting the endemic coronavirus OC43 was noted among convalescent individuals, illustrating a dichotomy in recognition between close and distant human coronavirus strains that was associated with exposure history. Probing the full-length spike and receptor binding domain (RBD) revealed that antibody-mediated Fc effector functions were better maintained against full-length spike as compared to RBD. This analysis of antibody functions in healthy and vulnerable populations across a panel of SARS-CoV-2 VOC and extending through endemic alphacoronavirus strains suggests the differential potential for antibody effector functions to contribute to protecting vaccinated and convalescent subjects as the pandemic progresses and novel variants continue to evolve. One Sentence SummaryAs compared to natural infection with SARS-CoV-2, vaccination drives superior functional antibody breadth raising hopes for candidate universal CoV vaccines.


Subject(s)
Severe Acute Respiratory Syndrome , Critical Illness , Death
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.05.24.22275467

ABSTRACT

Neutralizing antibody responses are attenuated in many solid organ transplant recipients (SOTRs) despite SARS-CoV-2 vaccination. Pre-exposure prophylaxis (PrEP) with the monoclonal antibody combination Tixagevimab and Cilgavimab (T+C) might augment immunoprotection, yet activity against Omicron sublineages in vaccinated SOTRs is unknown. Vaccinated SOTRs who received 300+300mg T+C (either single dose or two 150+150mg doses) within a prospective observational cohort submitted pre- and post-injection samples between 1/10/2022-4/4/2022. Binding antibody (anti-receptor binding domain [RBD], Roche) and surrogate neutralization (%ACE2 inhibition; >20% connoting neutralizing inhibition, Meso Scale Discovery) were measured against variants including Omicron sublineages BA.1 and BA.2. Data were analyzed using the Wilcoxon matched-pairs signed-rank test and McNemar's test. Among 61 participants, median (IQR) anti-RBD increased from 424 (IQR <0.8-2322.5) to 3394.5 (IQR 1403.9-7002.5) U/ml post T+C (p<0.001). The proportion demonstrating vaccine strain neutralizing inhibition increased from 46% to 100% post-T+C (p<0.001). BA.1 neutralization was low and did not increase (8% to 16% of participants post-T+C, p=0.06). In contrast, BA.2 neutralization increased from 7% to 72% of participants post-T+C (p<0.001). T+C increased anti-RBD levels, yet BA.1 neutralizing activity was minimal. Encouragingly, BA.2 neutralization was augmented and in the current variant climate T+C PrEP may serve as a useful complement to vaccination in high-risk SOTRs.

5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.01.22271662

ABSTRACT

The ongoing evolution of SARS-Co-V2 variants to omicron severely limits available effective monoclonal antibody therapies. Effective drugs are also supply limited. Covid-19 convalescent plasma (CCP) qualified for high antibody levels effectively reduces immunocompetent outpatient hospitalization. The FDA currently allows outpatient CCP for the immunosuppressed. Viral specific antibody levels in CCP can range ten-to hundred-fold between donors unlike the uniform viral specific monoclonal antibody dosing. Limited data are available on the efficacy of polyclonal CCP to neutralize variants. We examined 108 pre-delta/pre-omicron donor units obtained before March 2021, 20 post-delta COVID-19/post-vaccination units and one pre-delta/pre-omicron hyperimmunoglobulin preparation for variant specific virus (vaccine-related isolate (WA-1), delta and omicron) neutralization correlated to Euroimmun S1 IgG antibody levels. We observed a 2-to 4-fold and 20-to 40-fold drop in virus neutralization from SARS-CoV-2 WA-1 to delta or omicron, respectively. CCP antibody levels in the upper 10% of the 108 donations as well as 100% of the post-delta COVID-19/post-vaccination units and the hyperimmunoglobulin effectively neutralized all three variants. High-titer CCP neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants. Key pointsAll of the post-delta COVID-19/post vaccination convalescent plasma effectively neutralizes the omicron and delta variants. High-titer CCP and hyperimmunoglobulin neutralizes SARS-CoV-2 variants despite no previous donor exposure to the variants.


Subject(s)
COVID-19
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.09.22270718

ABSTRACT

The association between COVID-19 symptoms and antibody responses against SARS-CoV-2 is poorly characterized. We analyzed antibody levels in individuals with known SARS-CoV-2 infection to identify potential antibody-symptom associations. Convalescent plasma from 216 SARS-CoV-2 RNA+ individuals with symptomatology information were tested for the presence of IgG to the spike S1 subunit (Euroimmun ELISA), IgG to receptor binding domain (RBD, CoronaCHEK rapid test), and for IgG, IgA, and IgM to nucleocapsid (N, Bio-Rad ELISA). Logistic regression was used to estimate the odds of having a COVID-19 symptom from the antibody response, adjusting for sex and age. Cough strongly associated with antibodies against S1 (adjusted odds ratio [aOR]= 5.33; 95% CI from 1.51 to 18.86) and RBD (aOR=4.36; CI 1.49, 12.78). In contrast, sore throat significantly associated with the absence of antibodies to S1 and N (aOR=0.25; CI 0.08, 0.80 and aOR=0.31; 0.11, 0.91). Similarly, lack of symptoms associated with the absence of antibodies to N and RBD (aOR=0.16; CI 0.03, 0.97 and aOR=0.16; CI 0.03, 1.01). Cough appeared to be correlated with a seropositive result, suggesting that SARS-CoV-2 infected individuals exhibiting lower respiratory symptoms generate a robust antibody response. Conversely, those without symptoms or limited to a sore throat while infected with SARS-CoV-2 were likely to lack a detectable antibody response. These findings strongly support the notion that severity of infection correlates with robust antibody response.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
7.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.10.21267485

ABSTRACT

BACKGROUND: The efficacy of polyclonal high titer convalescent plasma to prevent serious complications of COVID-19 in outpatients with recent onset of illness is uncertain. METHODS: This multicenter, double-blind randomized controlled trial compared the efficacy and safety of SARS-CoV-2 high titer convalescent plasma to placebo control plasma in symptomatic adults >18 years positive for SARS-CoV-2 regardless of risk factors for disease progression or vaccine status. Participants with symptom onset within 8 days were enrolled, then transfused within the subsequent day. The measured primary outcome was COVID-19-related hospitalization within 28 days of plasma transfusion. The enrollment period was June 3, 2020 to October 1, 2021. RESULTS: A total of 1225 participants were randomized and 1181 transfused. In the pre-specified modified intention-to-treat analysis that excluded those not transfused, the primary endpoint occurred in 37 of 589 (6.3%) who received placebo control plasma and in 17 of 592 (2.9%) participants who received convalescent plasma (relative risk, 0.46; one-sided 95% upper bound confidence interval 0.733; P=0.004) corresponding to a 54% risk reduction. Examination with a model adjusting for covariates related to the outcome did not change the conclusions. CONCLUSION: Early administration of high titer SARS-CoV-2 convalescent plasma reduced outpatient hospitalizations by more than 50%. High titer convalescent plasma is an effective early outpatient COVID-19 treatment with the advantages of low cost, wide availability, and rapid resilience to variant emergence from viral genetic drift in the face of a changing pandemic.


Subject(s)
COVID-19
8.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.06.471446

ABSTRACT

There is a growing concern that ongoing evolution of SARS-CoV-2 could lead to variants of concern (VOC) that are capable of avoiding some or all of the multi-faceted immune response generated by both prior infection or vaccination, with the recently described B.1.1.529 (Omicron) VOC being of particular interest. Peripheral blood mononuclear cell samples from PCR-confirmed, recovered COVID-19 convalescent patients (n=30) infected with SARS-CoV-2 in the United States collected in April and May 2020 who possessed at least one or more of six different HLA haplotypes were selected for examination of their anti-SARS-CoV-2 CD8+ T-cell responses using a multiplexed peptide-MHC tetramer staining approach. This analysis examined if the previously identified viral epitopes targeted by CD8+ T-cells in these individuals (n=52 distinct epitopes) are mutated in the newly described Omicron VOC (n=50 mutations). Within this population, only one low-prevalence epitope from the Spike protein restricted to two HLA alleles and found in 2/30 (7%) individuals contained a single amino acid change associated with the Omicron VOC. These data suggest that virtually all individuals with existing anti-SARS-CoV-2 CD8+ T-cell responses should recognize the Omicron VOC, and that SARS-CoV-2 has not evolved extensive T-cell escape mutations at this time. ImportanceThe newly identified Omicron variant of concern contains more mutations than any of the previous variants described to date. In addition, many of the mutations associated with the Omicron variant are found in areas that are likely bound by neutralizing antibodies, suggesting that the first line of immunological defense against COVID-19 may be compromised. However, both natural infection and vaccination develop T-cell based responses, in addition to antibodies. This study examined if the parts of the virus, or epitopes, targeted by the CD8+ T-cell response in thirty individuals who recovered from COVID-19 in 2020 were mutated in the Omicron variant. Only one of 52 epitopes identified in this population contained an amino acid that was mutated in Omicron. These data suggest that the T-cell immune response in previously infected, and most likely vaccinated individuals, should still be effective against Omicron.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.27.21265574

ABSTRACT

Pre-existing antibodies to endemic coronaviruses (CoV) that cross-react with SARS-CoV-2 have the potential to influence the antibody response to COVID-19 vaccination and infection for better or worse. In this observational study of mucosal and systemic humoral immunity in acutely infected, convalescent, and vaccinated subjects, we tested for cross reactivity against endemic CoV spike (S) protein at subdomain resolution. Elevated responses, particularly to the {beta}-CoV OC43, were observed in all natural infection cohorts tested and were correlated with the response to SARS-CoV-2. The kinetics of this response and isotypes involved suggest that infection boosts preexisting antibody lineages raised against prior endemic CoV exposure that cross react. While further research is needed to discern whether this recalled response is desirable or detrimental, the boosted antibodies principally targeted the better conserved S2 subdomain of the viral spike and were not associated with neutralization activity. In contrast, vaccination with a stabilized spike mRNA vaccine did not robustly boost cross-reactive antibodies, suggesting differing antigenicity and immunogenicity. In sum, this study provides evidence that antibodies targeting endemic CoV are robustly boosted in response to SARS-CoV-2 infection but not to vaccination with stabilized S, and that depending on conformation or other factors, the S2 subdomain of the spike protein triggers a rapidly recalled, IgG-dominated response that lacks neutralization activity.


Subject(s)
COVID-19 , Acute Disease
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.10.13.21264968

ABSTRACT

Background: Emergency Departments (EDs) can serve as surveillance sites for infectious diseases. Our purpose was to determine the burden of SARS-CoV-2 infection and prevalence of vaccination against COVID-19 among patients attending an urban ED in Baltimore City. Methods: Using 1914 samples of known exposure status, we developed an algorithm to differentiate previously infected, vaccinated, and unexposed individuals using a combination of antibody assays. We applied this testing algorithm to 4360 samples ED patients obtained in the springs of 2020 and 2021. Using multinomial logistic regression, we determined factors associated with infection and vaccination. Results: For the algorithm, sensitivity and specificity for identifying vaccinated individuals was 100% and 99%, respectively, and 84% and 100% for naturally infected individuals. Among the ED subjects, seroprevalence to SARS-CoV-2 increased from 2% to 24% between April 2020 and March 2021. Vaccination prevalence rose to 11% by mid-March 2021. Marked differences in burden of disease and vaccination coverage were seen by sex, race, and ethnicity. Hispanic patients, though 7% of the study population, had the highest relative burden of disease (16 % of total infections) but similar vaccination rates. Women and White individuals were more likely to be vaccinated than men or Black individuals (adjusted odds ratios aOR 1.35 [95% CI: 1.02, 1.80] and aOR 2.26 [95% CI: 1.67, 3.07], respectively). Conclusions: Individuals previously infected with SARS-CoV-2 can be differentiated from vaccinated individuals using a serologic testing algorithm. SARS-CoV-2 exposure and vaccination uptake frequencies reflect gender, race and ethnic health disparities in this urban context.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Communicable Diseases
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.11.21261914

ABSTRACT

Vaccine-induced SARS-CoV-2 antibody responses are attenuated in solid organ transplant recipients (SOTRs) and breakthrough infections are more common. Additional SARS-CoV-2 vaccine doses increase anti-spike IgG in some SOTRs, but it is uncertain whether neutralization of variants of concern (VOCs) is enhanced. We tested 47 SOTRs for clinical and research anti-spike IgG, pseudoneutralization (ACE2 blocking), and live-virus neutralization (nAb) against VOCs before and after a third SARS-CoV-2 vaccine dose (70% mRNA, 30% Ad26.COV2.S) with comparison to 15 healthy controls after two mRNA vaccine doses. We used correlation analysis to compare anti-spike IgG assays and focused on thresholds associated with neutralizing activity. A third SARS-CoV-2 vaccine dose increased median anti-spike (1.6-fold) and receptor-binding domain (1.5-fold) IgG, as well as pseudoneutralization against VOCs (2.5-fold versus Delta). However, IgG and neutralization activity were significantly lower than healthy controls (p<0.001); 32% of SOTRs had zero detectable nAb against Delta after third vaccination. Correlation with nAb was seen at anti-spike IgG >4 AU on the clinical assay and >10^4 AU on the research assay. These findings highlight benefits of a third vaccine dose for some SOTRs and the need for alternative strategies to improve protection in a significant subset of this population.


Subject(s)
Breakthrough Pain
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.06.21261710

ABSTRACT

While antibodies provide significant protection from SARS-CoV-2 infection and disease sequelae, the specific attributes of the humoral response that contribute to immunity are incompletely defined. In this study, we employ machine learning to relate characteristics of the polyclonal antibody response raised by natural infection to diverse antibody effector functions and neutralization potency with the goal of generating both accurate predictions of each activity based on antibody response profiles as well as insights into antibody mechanisms of action. To this end, antibody-mediated phagocytosis, cytotoxicity, complement deposition, and neutralization were accurately predicted from biophysical antibody profiles in both discovery and validation cohorts. These predictive models identified SARS-CoV-2-specific IgM as a key predictor of neutralization activity whose mechanistic relevance was supported experimentally by depletion. Validated models of how different aspects of the humoral response relate to antiviral antibody activities suggest desirable attributes to recapitulate by vaccination or other antibody-based interventions.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.11.21251585

ABSTRACT

This study examined whether CD8+ T-cell responses from COVID-19 convalescent individuals(n=30) potentially maintain recognition of the major SARS-CoV-2 variants. Out of 45 mutations assessed, only one from the B.1.351 Spike overlapped with a low-prevalence CD8+ epitope, suggesting that virtually all anti-SARS-CoV-2 CD8+ T-cell responses should recognize these newly described variants.


Subject(s)
COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.08.330688

ABSTRACT

Characterization of the T cell response in individuals who recover from SARS-CoV-2 infection is critical to understanding its contribution to protective immunity. A multiplexed peptide-MHC tetramer approach was used to screen 408 SARS-CoV-2 candidate epitopes for CD8+ T cell recognition in a cross-sectional sample of 30 COVID-19 convalescent individuals. T cells were evaluated using a 28-marker phenotypic panel, and findings were modelled against time from diagnosis, humoral and inflammatory responses. 132 distinct SARS-CoV-2-specific CD8+ T cell epitope responses across six different HLAs were detected, corresponding to 52 unique reactivities. T cell responses were directed against several structural and non-structural virus proteins. Modelling demonstrated a coordinated and dynamic immune response characterized by a decrease in inflammation, increase in neutralizing antibody titer, and differentiation of a specific CD8+ T cell response. Overall, T cells exhibited distinct differentiation into stem-cell and transitional memory states, subsets, which may be key to developing durable protection.


Subject(s)
COVID-19 , Inflammation
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.08.331751

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 is in immediate need of an effective antidote. Although the Spike glycoprotein (SgP) of SARS-CoV-2 has been shown to bind to heparins, the structural features of this interaction, the role of a plausible heparan sulfate proteoglycan (HSPG) receptor, and the antagonism of this pathway through small molecules remain unaddressed. Using an in vitro cellular assay, we demonstrate HSPGs modified by the 3-O-sulfotransferase isoform-3, but not isoform-5, preferentially increased SgP-mediated cell-to-cell fusion in comparison to control, unmodified, wild-type HSPGs. Computational studies support preferential recognition of the receptor-binding domain of SgP by 3-O-sulfated HS sequences. Competition with either fondaparinux, a 3-O-sulfated HS-binding oligopeptide, or a synthetic, non-sugar small molecule, blocked SgP-mediated cell-to-cell fusion. Finally, the synthetic, sulfated molecule inhibited fusion of GFP-tagged pseudo SARS-CoV-2 with human 293T cells with sub-micromolar potency. Overall, overexpression of 3-O-sulfated HSPGs contribute to fusion of SARS-CoV-2, which could be effectively antagonized by a synthetic, small molecule.


Subject(s)
COVID-19
16.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.10.07.326462

ABSTRACT

The COVID-19 pandemic has claimed the lives of more than one million people worldwide. The causative agent, SARS-CoV-2, is a member of the Coronaviridae family, which are viruses that cause respiratory infections of varying severity. The cellular host factors and pathways co-opted by SARS-CoV-2 and other coronaviruses in the execution of their life cycles remain ill-defined. To develop an extensive compendium of host factors required for infection by SARS-CoV-2 and three seasonal coronaviruses (HCoV-OC43, HCoV-NL63, and HCoV-229E), we performed parallel genome-scale CRISPR knockout screens. These screens uncovered multiple host factors and pathways with pan-coronavirus and virus-specific functional roles, including major dependency on glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis, as well as an unexpected requirement for several poorly characterized proteins. We identified an absolute requirement for the VTT-domain containing protein TMEM41B for infection by SARS-CoV-2 and all other coronaviruses. This human Coronaviridae host factor compendium represents a rich resource to develop new therapeutic strategies for acute COVID-19 and potential future coronavirus spillover events. HIGHLIGHTSGenome-wide CRISPR screens for SARS-CoV-2, HCoV-OC43, HCoV-NL63, and HCoV-229E coronavirus host factors. Parallel genome-wide CRISPR screening uncovered host factors and pathways with pan-coronavirus and virus-specific functional roles. Coronaviruses co-opt multiple biological pathways, including glycosaminoglycan biosynthesis, SREBP signaling, and glycosylphosphatidylinositol biosynthesis and anchoring, among others. TMEM41B - a poorly understood factor with roles in autophagy and lipid mobilization - is a critical pan-coronavirus host factor.


Subject(s)
COVID-19 , Respiratory Tract Infections
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.16.20196154

ABSTRACT

Convalescent plasma has emerged as a promising COVID-19 treatment. However, the humoral factors that contribute to efficacy are poorly understood. This study functionally and phenotypically profiled plasma from eligible convalescent donors. In addition to viral neutralization, convalescent plasma contained antibodies capable of mediating such Fc-dependent functions as complement activation, phagocytosis and antibody-dependent cellular cytotoxicity against SARS-CoV-2. These activities expand the antiviral functions associated with convalescent plasma and together with neutralization efficacy, could be accurately and robustly from antibody phenotypes. These results suggest that high-throughput profiling could be used to screen donors and plasma may provide benefits beyond neutralization.


Subject(s)
COVID-19 , Drug-Related Side Effects and Adverse Reactions
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.10.20186064

ABSTRACT

By interrogating metabolic programs in the peripheral blood mononuclear cells (PBMC) of acutely infected COVID-19 patients, we identified novel and distinct immune cell subsets Our studies identified a non-clonal population of T cells expressing high H3K27me3 and voltage-dependent anion channel (VDAC) with mitochondrial dysfunction and increased susceptibility to cell death. Characterized by dysmorphic mitochondria and increased cytoplasmic cytochrome c, apoptosis of these cells was inhibited by preventing VDAC aggregation or blocking caspase activation. Further, we observed a marked increase in Hexokinase II+ polymorphonuclear-myeloid derived suppressor cells (PMN-MDSC). While PMN-MDSC were also found in the PBMC of patients with other viral infections, the Hexokinase II+ PMN-MDSC were found exclusively in the acute COVID-19 patients with moderate or severe disease. Finally, we identified a population of monocytic MDSC (M-MDSC) expressing high carnitine palmitoyltransferase I (CPT1a) and VDAC, which were present in the PBMC of the acute COVID-19 patients, but not recovered COVID-19 patients and whose presence correlated with severity of disease. Overall, these unique populations of immune cells provide insight into the pathogenesis of SARS-CoV-2 infection and provide a means to predict and track disease severity as well as an opportunity to design and evaluate novel therapeutic regimens.


Subject(s)
Mitochondrial Diseases , Virus Diseases , COVID-19
19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.31.20184788

ABSTRACT

Accurate serological assays to detect antibodies to SARS-CoV-2 are needed to characterize the epidemiology of SARS-CoV-2 infection and identify potential candidates for COVID-19 convalescent plasma (CCP) donation. This study compared the performance of commercial enzyme immunoassays (EIAs) to detect IgG or total antibodies to SARS-CoV-2 and neutralizing antibodies (nAb). The diagnostic accuracy of five commercially available EIAs (Abbott, Euroimmun, EDI, ImmunoDiagnostics, and Roche) to detect IgG or total antibodies to SARS-CoV-2 was evaluated from cross-sectional samples of potential CCP donors that had prior molecular confirmation of SARS-CoV-2 infection for sensitivity (n=214) and pre-pandemic emergency department patients for specificity (n=1,102). Of the 214 potential CCP donors, all were sampled >14 days since symptom onset and only a minority had been hospitalized due to COVID-19 (n=16 [7.5%]); 140 potential CCP donors were tested by all five EIAs and a microneutralization assay. When performed according to the manufacturers protocol to detect IgG or total antibodies to SARS-CoV-2, the sensitivity of each EIA ranged from 76.4% to 93.9%, and the specificity of each EIA ranged from 87.0% to 99.6%. Using a nAb titer cutoff of [≥]160 as the reference positive test (n=140 CCP donors), the empirical area under receiver operating curve of each EIA ranged from 0.66 (Roche) to 0.90 (Euroimmun). Commercial EIAs with high diagnostic accuracy to detect SARS-CoV-2 antibodies did not necessarily have high diagnostic accuracy to detect high nAbs. Some but not all commercial EIAs may be useful in the identification of individuals with high nAbs in convalescent individuals.


Subject(s)
COVID-19
20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.31.20166041

ABSTRACT

BackgroundRapid point-of-care tests (POCTs) for SARS-CoV-2-specific antibodies vary in performance. A critical need exists to perform head-to-head comparison of these assays. MethodsPerformance of fifteen different lateral flow POCTs for the detection of SARS-CoV-2-specific antibodies was performed on a well characterized set of 100 samples. Of these, 40 samples from known SARS-CoV-2-infected, convalescent individuals (average of 45 days post symptom onset) were used to assess sensitivity. Sixty samples from the pre-pandemic era (negative control), that were known to have been infected with other respiratory viruses (rhinoviruses A, B, C and/or coronavirus 229E, HKU1, NL63 OC43) were used to assess specificity. The timing of seroconversion was assessed on five POCTs on a panel of 272 longitudinal samples from 47 patients of known time since symptom onset. ResultsFor the assays that were evaluated, the sensitivity and specificity for any reactive band ranged from 55%-97% and 78%-100%, respectively. When assessing the performance of the IgM and the IgG bands alone, sensitivity and specificity ranged from 0%-88% and 80%-100% for IgM and 25%-95% and 90%-100% for IgG. Longitudinal testing revealed that median time post symptom onset to a positive result was 7 days (IQR 5.4, 9.8) for IgM and 8.2 days (IQR 6.3 to 11.3). ConclusionThe testing performance varied widely among POCTs with most variation related to the sensitivity of the assays. The IgM band was most likely to misclassify pre-pandemic samples. The appearance of IgM and IgG bands occurred almost simultaneously.

SELECTION OF CITATIONS
SEARCH DETAIL